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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1994, VOL. 13, No. 2,263-289 

Variational transition state theory for activated 
chemical reactions in solution 

by BRUCE C. GARRETT and GREGORY K. SCHENTER 
Molecular Science Research Center, Pacific Northwest Laboratory, 

Richland, WA 99352, USA 

An approach is outlined for including solvent effects in variational transition 
state theory calculations of rate constants for activated chemical reactions in 
solution. The focus is on methods capable of first-principles predictions of reaction 
rate constants from interatomic potential energy surfaces. The approach separates 
the system into a cluster model that is treated explicitly and the ‘solvent’ that is 
treated approximately, and includes both equilibrium solvation effects on interac- 
tion energies and non-equilibrium effects that enter through a solvent friction 
model. We discuss methods used to included quantum-mechanical effects on bound 
vibrational motions and quantum-mechanical effects on motion along a reaction 
coordinate (e.g. quantum tunnelling). 

1. Introduction 
Transition state theory (TST) (Glasstone et al. 1941, Bunker 1966, Johnston 1966, 

Pechukas 1976, Laidler 1987) has been the most widely used tool for analysis of rate 
constants for chemical reactions in both gas phase (for example Benson 1976) and 
solution (for example Moore and Pearson 1981). In addition, TST provides a 
convenient framework for first-principles predictions of reaction rate constants from a 
knowledge of the potential energy as a function of interatomic distance (the potential 
energy surface). The calculation of reaction rate constants from potential energy 
surfaces was first discussed by Eyring (1935) and progress towards this goal has been 
reviewed by Laidler and King (1983) and Truhlar et al. (1983). Over the past decade 
there has been great progress in developing methods for quantitative predictions of rate 
constants of gas-phase reactions (for a recent review see Steinfeld et al. 1989). One 
successful example of this is quantized variational transition state theory (VTST) with 
multidimensional semiclassical tunnelling corrections (Truhlar and Garrett 1980,1984, 
Truhlar et al. 1985, Isaacson et al. 1987, Lu et al. 1992) that have been developed for 
reactions in the gas phase and at gas-surface interfaces. These methods are capable of 
accurate predictions of gas-phase rate constants; the accuracy of the potential energy 
surface is typically the major factor limiting the precision of the calculated rate 
constants. Applications of VTST have been reviewed by Truhlar and Garrett (1984) 
and Truhlar and Gordon (1990) and recent critical comparisons of VTST with accurate 
quantum mechanics include those by Garrett et al. (1986), Garrett and Truhlar (1991) 
and McRae et al. (1992). Here we examine a strategy for applying the quantized VTST 
with multidimensional semiclassical tunnelling methods to reactions in solution. 

The thermodynamic formulation of TST (Glasstone et al. 1941) is the approach 
most used for analysing gas-phase reaction rate constants (Benson 1976) (see also 
Truhlar and Garrett 1989 for how this approach can be extended to include variational 
and tunnelling effects). In this approach a quasiequilibrium is postulated between 
reactants and the transition state. The rate constant is expressed as the product of the 
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264 B. C. Garrett and G. K. Schenter 

rate of decomposition of the transition state complex to products and the equilibrium 
constant for forming the transition state complex from reactants. The equilibrium 
constant is often interpreted in terms of a free energy of activation or, equivalently, in 
terms of separate contributions to the enthalpy and entropy of activation that are 
modelled empirically or theoretically (Benson 1976). The effect of the solvent on the 
reaction energetics is conveniently included in this formalism as the difference in free 
energies of solvation of the transition state and reactants (see Reichardt 1988, and 
references therein). 

The dynamical formulation of TST (Wigner 1938) provides the best approach to 
examine the approximations in TST and also provides the basis for improvements to 
the conventional theory. In this approach, the classical equilibrium rate constant? is 
derived using a single approximation, the fundamental dynamical assumption of TST 
(Wigner 1938, Miller 1974, Pechukas 1976, Tucker and Truhlar 1989). The reactive flux 
through a dividing surface separating reactants from products is assumed to be the 
equilibrium flux of trajectories that crosses the dividing surface with momentum 
directed towards products; that is, it is assumed that all classical trajectories that reach 
the dividing surface from the reactant side are stabilized as products without recrossing 
the dividing surface. This obviates the need to know the detailed classical dynamics of 
the reaction; only the momentum at the dividing surface is required. Once this 
approximation is made, the rate constant calculation reduces to an equilibrium 
statistical mechanical evaluation of the volume of available phase space for trajectories 
to pass from reactants to products. Evaluation of this equilibrium average is 
constrained to a dividing surface and yields the classical partition function for the 
bound degrees of freedom that are defined by the dividing surface. 

Classical trajectories that recross the dividing surface cause the breakdown of the 
fundamental dynamical assumption of TST. All reactive classical trajectories are 
required to cross the dividing surface at least once, but some non-reactive trajectories 
that recross the dividing surface are also counted as reactive in TST. Thus TST 
provides an upper bound to the exact reactive flux of classical trajectories through the 
dividing surface. This is the basis of classical variational VTSTs that optimize the 
location of the dividing surface to minimize the rate constant (Wigner 1937, Horiuti 
1938, Keck 1960, 1967, Jaffe et al. 1973, Miller 1974, Pechukas 1976, Pollak and 
Pechukas 1978, Garrett and Truhlar 1979b). Although the dividing surface can, in 
principle be defined as a function of both coordinates and momenta, practical 
applications for complex systems generally require the use of simple functional forms 
such as planar functions of coordinates only. 

The effect of the solvent on the reaction energetics can also be included in the 
dynamical formulation of classical transition state theory (Chandler 1978, Hynes 
1985a, Berne et al. 1988). For reactions in solution, the equilibrium averages include 
ensemble averages over solvent degrees of freedom and they can be evaluated using 

__ 

?Throughout we shall use the term rate constant to denote equilibrium rate constant rather 
than the phenomenological non-equilibrium rate constant that may be observed experimentally. 
Approximating the observed rate constant by the equilibrium rate constant is often referred to as 
the local-equilibrium approximation, for example the assumption that transition state species 
which originated as reactants are in local equilibrium with reactants. We address only those 
approximations needed to obtain the equilibrium rate constant. 
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Variational transition state theory 265 

standard methods of statistical mechanics (McQuarrie 1976). The equilibrium averages 
yield partition functions for the transition state complex and reactants, and the ratio of 
these partition functions is just the equilibrium constant used in the thermodynamic 
formulation. If the dividing surface is defined to be a function of only the coordinates of 
the reacting solute molecules, then the thermodynamic averages over the solvent 
degrees of freedom give the solvent partition function that is related to the free energy of 
solvation. 

The use of TST for solution-phase reactions dates back to the work of Evans and 
Polanyi (1935), but it is only within the past 15 years that the validity of the 
fundamental approximation of classical mechanical TST have been more closely 
examined for reactions in solution (for example Chandler 1978 and Hynes 1985a). As 
pointed out by these workers, collisions of solvent molecules with the reacting solute 
molecules can lead to recrossings of the dividing surface that do not occur in the gas 
phase and therefore lead to a breakdown of the fundamental dynamical assumption of 
TST. One advantage of the dynamical formulation of TST is that it provides a means to 
mitigate the effects of this breakdown by variationally optimizing the dividing surface 
in the space of both the solute and the solvent degrees of freedom. In this case the 
dividing surface is defined as a function of solvent coordinates as well as the coordinates 
of the reacting solute molecules. A procedure for using planar dividing surfaces that 
includes the explicit solvent coordinates in classical mechanical VTST has been 
discussed by Pollak (1991~). However, this does lead to a complication in the 
calculation of the ensemble averages since they are constrained to be evaluated on a 
dividing surface. It is much easier to evaluate the averages over the solvent degrees of 
freedom if they have no external constraint. For this reason, dividing surfaces are 
typically chosen to depend only on the solute coordinates, and solvent-induced 
recrossings are included using approximate models. This is discussed further below in 
the context of equilibrium and non-equilibrium solvent effects. 

For many reactions, especially those including light atoms, such as hydrogen atom, 
proton or hydride transfer reactions, quantum-mechanical effects on the motion of the 
atoms must be included. Attempts at developing a rigorous formulation of a quantum- 
mechanical TST that provides an upper bound to the exact quantum-mechanical rate 
constant have not been successful to date (McLafferty and Pechukas 1974, Miller 1974, 
Pechukas 1976, Pollak and Proselkov 1993). Additional approximations are needed to 
include quantum-mechanical effects into TST. The standard approach is an ad-hoc 
procedure (Eyring 1935, Glasstone et 01. 1941) that replaces classical partition 
functions by approximate quantum-mechanical functions and then correction factors 
for quantum-mechanical effects on the reaction coordinate motion (such as tunnelling) 
are included. That is the approach discussed here for including quantum-mechanical 
effects in VTST (Garrett and Truhlar 1979c, Truhlar et al. 1982, 1985, Isaacson et al. 
1987, Lu et al. 1992). 

Before proceeding we mention another approach that is gaining popularity, namely 
the Feynman path integral formulation (Feynman and Hibbs 1965, Feynman 1972) of 
quantum-mechanical TST (Voth et al. 1989) that was based on earlier work by Gillan 
(1987). This method has recently been reviewed by Voth (1993) including a review of 
applications and extensions of the method. It is interesting that both the VTST and the 
path integral approaches have been applied to a model reaction in solution (McRae 
et a6. 1992, McRae and Garrett 1993) and, although they employ different approxim- 
ations, they agree well with each other and with accurate benchmark results. To date, 
the VTST approach has been applied and tested for a more extensive set of systems and 
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266 B. C. Garrett and G. K. Schenter 

to more complex reactions, and in this work we examine how it can be extended to even 
more complex systems, namely solution-phase reactions. The approach taken here is to 
develop reduced-dimensional effective Hamiltonians that approximate the effects of 
the solvent. The path integral approach can be applied either to the Hamiltonians for 
the full system or to the reduced-dimensional Hamiltonians. In the future it will be 
interesting to see comparisons of these types of calculation as well as other comparisons 
of the VTST and path integral approaches for reduced-dimensional Hamiltonians. 

The computational procedures used to perform VTST calculations that include 
quantum-mechanical effects are significantly different from those outlined above for 
the classical mechanical theory. The quantum-mechanical calculations require identif- 
ication of a saddle point and a reaction path connecting the saddle point with reactants 
and products. For reactions in solution, there are many saddle points that are close in 
energy and that differ significantly only in the configuration of the solvent (for example 
Warshel 1979 and Harris and Stillinger 1990). The multiple saddle points are a 
reflection of the large anharmonicity in the solvent that makes the quantum- 
mechanical calculation of the partition functions impractical. In this case, it is much 
more difficult to see how to apply VTST methods to reactions in solution. The major 
focus of this work is the description of a procedure for making these calculations 
practical. 

VTST including quantum-mechanical effects can be applied to solution-phase 
reactions by separating the system into a cluster model that contains the part of the 
system undergoing reaction and the solvent that is treated in an approximate manner 
(figure 1). This dichotomy is well founded in the literature (for example Adelman 1983, 
1984, Warshel and Russell 1984, Robinson et al. 1990). The cluster model can include a 
finite collection of solvent molecules as well as the reactants or solute molecules. The 
effects of microsolvation on reaction dynamics has been studied using VTST by Tucker 
and Truhlar (1990), Gonzalez-Lafont et al. (1991) and Zhao et al. (1991, 1992) and 
using classical trajectories by Hu and Hase (1992). The VTST calculations have 
included only a small number of solvent molecules (one or two) but in principle this 
approach can be extended to larger clusters. As more solvent molecules are added, the 
VTST calculations become more difficult and applications to clusters of sufficient size 
to reproduce bulk liquid are not practical. In practice, the studies of cluster models will 
be limited to those that are sufficiently small to retain the ease of the gas-phase VTST 
calculations. Note that in this article we shall use the terminology solute to mean the 
cluster model even though it may contain some solvent degrees of freedom. 

A convenient approach to approximating the influence of the extended solution on 
the solute reaction dynamics is -by separating solvent equilibrium (stai :ic) and non- 

Figure 1. Approximation of solution-phase system by a cluster model (inside the circle) and an 
approximate model of the solvent (depicted by oscillators). 
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Variational transition state theory 267 

equilibrium (dynamic) effects.? Equilibrium solvation affects the reaction energetics of 
the solute. The constant proximity of solvent molecules around the solute changes the 
interaction potential of the solute. The resulting mean-field potential for the solute is 
obtained from an equilibrium ensemble average over solvent configurations. Since this 
mean-field potential is obtained from an equilibrium ensemble average at each solute 
configuration, the equilibrium solvation assumption implies that the solvent molecules 
instantaneously equilibrate to each new solute configuration. In the thermodynamic 
formulation of TST the effect of the solvent on the reaction energetics is included by the 
free energy of solvation that is obtained from equilibrium ensemble averages and is 
therefore an equilibrium solvent effect. 

From a knowledge of the potential energy surface of the entire system, the free 
energy of solvation, or equivalently the potential of mean force, can be computed 
classically using statistical perturbation theory (Zwanzig 1954). This approach has 
been used to compute the free energy of activation for reactions in solution by 
Jorgensen and co-workers (for recent reviews see Jorgensen 1988,1989). In some cases, 
such as when masses of either the solute or solvent are sufficiently light, a quantum- 
mechanical evaluation of the free energy may be necessary. In principle this can be 
accomplished using path integral methods (Feynman and Hibbs 1965, Feynman 
1972).f The condition for validity of classical mechanics is that the deBroglie 
wavelengths of the particles are sufficiently small compared with the average length 
scale of their interactions with other particles in the solution. For most cases, except 
possibly for hydrogen atoms, classical mechanics should be adequate and in this article 
we consider only the classical mechanical evaluation of the free energies of solvation. 

Equilibrium solvation includes the average effect of the solvent on the energetics of 
the interactions within the cluster for each cluster geometry. This neglects any 
dynamical influence that the solvent may have on the reaction dynamics as a result of 
solvent fluctuations. Non-equilibrium or dynamic solvent effects can be separated into 
local and collective effects. Local effects, such as solvent caging in which the solvent 
molecules must move out of the way of the reacting molecules, involve only a limited 
number of solvent molecules that can be included in the cluster model. Collective effects 
involve cooperative motions of the molecules in the bulk liquid and may be included 
with reduced-dimensional models. When the interaction potentials are dominated by 
electrostatic interactions (such as for a charge-transfer reaction in a polarizable 
medium), the collective effect may be best included by a non-equilibrium polarization 
model (Lee and Hynes 1988, Truhlar et al. 1993). Here we focus on situations where this 
collective non-equilibrium solvent effect on the solute dynamics is treated by a solvent 
friction model based on a generalized Langevin equation (GLE) (Zwanzig 1965, Mori 
1965, Kubo 1966). 

As mentioned above, one consequence of solvent dynamics is a breakdown of the 
no-recrossing approximation of TST. Methods for treating the solvent-induced 
recrossing based upon a solvent friction model include the early work of Kramers 
(1940) and more recent extensions by Grote and Hynes (1980). Recent reviews of the 
Kramers theory include those by Nitzan (1988) and Hanggi et al. (1990). These classical 

?The terminology of equilibrium and non-equilibrium solvent effects is very old (for example 
Kurz and Kurz 1972) but the concepts have been refined in more recent work (for example 
Chandler 1978, Truhlar et a/ .  1983, Hynes 1985a, b, Berne et aJ. 1988, Tucker and Truhlar 1990). 

$For a recent example of the calculation of a quantum-mechanical free energy of solvation 
see Gai and Garrett (1994). 
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268 B. C. Garrett and G. K. Schenter 

mechanical methods estimate the recrossing of a dividing surface that is defined in 
terms of a single solute reaction coordinate using a GLE model. As has been shown by 
van der Zwan and Hynes (1983,1984), a single reaction coordinate GLE model can be 
equivalent to a multidimensional solvent model. The formal relation between the 
Kramers and Grote-Hynes theories and multidimensional classical TST on an 
effective Hamiltonian that models the solvent friction by a collection of oscillators 
(Ford et al. 1965, Zwanzig 1973) has been demonstrated by Dakhnovskii and 
Ovchinnikov (1985) and Pollak (1986a). In this case, the dividing surface in the 
multidimensional TST is implicitly defined to be a function of effective solvent degrees 
of freedom as well as those of the solute. In the present paper we discuss how the friction 
model can be used in VTST calculations that include quantum-mechanical effects. 

The notion that the friction model can be used in a quantum-mechanical 
calculation deserves further consideration. The GLE is a classical mechanical equation 
of motion for the solute degrees of freedom that includes the effect of solvent friction 
and random forces exerted by the solvent. In this model the influence of the solvent 
dynamics on the reaction is completely determined by the friction tensor. The friction 
tensor may be obtained from classical mechanical simulations of the autocorrelation 
function of the force exerted by the solvent on the solute. The use of classical mechanics 
to model the influence of the solvent dynamics on the reaction is most valid when the 
friction tensor is characterized by low-frequency intermolecular motions of the solvent. 
In the case where high-frequency intramolecular solvent motions contribute signifi- 
cantly to the friction tensor, it may be better to include explicitly some of these modes in 
the cluster model where they can be treated quantum-mechanically. The use of the 
classical mechanics to obtain the friction tensor is therefore on firm grounds; however, 
the use of this classically derived friction model in a quantum-mechanical calculation is 
less justified. Throughout this article we shall describe the approximate treatment of 
the solvent interaction with the solute in terms of reduced-dimensional effective 
Hamiltonians. The reduced system will then be solved in terms of a complete quantum- 
mechanical treatment. Classical mechanics is a convenient technique for parametriz- 
ation of these Hamiltonians. If necessary, quantum mechanics may be employed. These 
issues will be discussed further in 4 3. 

One goal of this paper is to indicate how the equilibrium and non-equilibrium 
solvent effects can be incorporated in the computational procedures used in quantized 
VTST calculations. Although the focus is on a quantum-mechanical prescription, it is 
first necessary to consider classical mechanical rate theories since the solvent influence 
on the reaction dynamics of the solute is modelled using classical mechanics. Therefore, 
we explicitly show how the reduction of the multidimensional solvent to the 
approximate equilibrium and non-equilibrium models is carried out in classical 
mechanical rate theories. For the nonequilibrium model it is necessary to examine the 
exact classical dynamics in the reduced model; thus, the starting point for our 
discussions is the exact classical rate constant expression. Once the approximation to 
the dynamical influence of the solvent is made, the explicit dynamics are replaced by the 
transition state approximation. An effective Hamiltonian of reduced dimension results 
from the analysis. Quantum-mechanical corrections are then made to the classical 
mechanical generalized TST expression by an ad-hoc procedure. 

Another objective here is to indicate the type of information that is needed to 
perform the VTST calculations. One advantage of VTST over other dynamical 
methods for gas-phase reaction is that a global potential energy surface is not needed 
(Garrett et al. 198 1, Truhlar et al. 1986, Isaacson et al. 1987, Truhlar and Gordon 1990). 
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Variational transition state theory 269 

By knowing the potential in the region of a path connecting reaction and products (a 
'reaction-valley potential' as termed by Truhlar and Gordon 1990), the VTST 
calculations can be performed. One approach is to use the potential and its first and 
second derivatives along the reaction path computed using ab-initio electronic 
structure theory (for recent applications of this approach see Garrett et al. 1990 and 
Garrett and Melius 1991). When necessary, selected higher-order derivatives can be 
included to account for some of the anhannonicity. In the present paper we present an 
approach to representing the solvent average potential along a reaction valley in terms 
of the value of the potential and its first and second derivatives along a path. 

We start in 9 2 by reviewing the classical rate theories and the methods used to 
include quantum-mechanical effects in the VTST calculations. In $ 3  we consider a 
partitioning of the system into solute and solvent components and then discuss 
approximate methods for including solvent effects in the classical mechanical and 
quantum-mechanical theories. Both equilibrium and non-equilibrium solvation 
approximations are derived within the classical mechanical theories and prescription 
for treating the models quantum-mechanically are described. In 0 4, concluding 
remarks are presented. 

2. Methods 
We are interested in the application of VTST beginning from a knowledge of the 

potential energy surface and other important parameters of the system, such as the 
mass of the atoms and temperature. Throughout, it is assumed that the potential energy 
surface for the entire system is known. A discussion of methods for obtaining accurate 
potential energy surface information for the extended system of a reaction in solution is 
beyond the scope of this work. However, we shall try to indicate where the solvent 
effects can be approximated by reduced-dimensional models rather than a full potential 
energy surface. 

We begin by discussing the general case where all degrees of freedom are explicit. In 
this case, all atoms are considered to be part of the cluster model or solute and the 
approach is identical with that used in a gas-phase reaction. The starting point is 
knowledge of the complete Hamiltonian for the system. We assume, with no loss of 
generality, that the Hamiltonian may be recast in the following mass-scaled form: 

where q and p are coordinates and conjugate momenta of the cluster model (or solute), 
p is a reduced mass and V(q) is the potential energy surface as a function of the 
coordinates. It is most convenient to take q to be the Cartesian coordinates of each 
atom in the system multiplied by a mass scaling factor that gives the same effective mass 
p for each coordinate. 

2.1. Classical rate theories 
The reactive flux formalism (Miller 1974) provides a convenient formulation of the 

classical rate constant for chemical reactions in terms of the Hami1tonian.t It is 
assumed that the reactants may be distinguished from the products by a continuous 

?The reactive flux formalism of Miller is most convenient for gas-phase reactions and this is 
the approach taken here. The reactive flux correlation formalism of Yamamoto (1960) is 
convenient for both gas- and solution-phase reactions. In the latter the rate constant is derived 
from a time-dependent reactive flux correlation function. The phenomenological rate constant, if 
it exists, is defined as the plateau value of the time correlation function (Chandler 1978). In the 
reactive flux formalism used here, it is assumed that a plateau value exists. 
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270 B. C. Garrett and G. K. Schenter 

function Z(q, p )  that is negative for reactant regions and positive for product regions of 
phase space. (Often it is the case that a single coordinate, q1 for example, is chosen to be 
a 'reaction coordinate', and Z is chosen to be a function of the reaction coordinate only, 
e.g. Z = q , . )  The classical equilibrium rate constant is expressed in terms of the flux of 
reactive trajectories across the dividing surface defined by the implicit equation, Z = 0. 
For a canonical ensemble at temperature T,  the exact classical rate constant is given by 

where the classical trace is defined as a classical phase-space average: 

N is the total dimension the system, 27th is Planck's constant, P=l /k ,T  and k ,  is 
Boltzmann's constant. The phase-space average is over initial conditions for classical 
trajectories and the Dirac delta function restricts the average to the dividing surface 
(e.g. Z =0). Each phase-space point is weighted by the classical phase-space density 
exp ( - p H ) ,  and the flux through the dividing surface for the trajectory specified by the 
point in phase space is defined by 

The characteristic function x(q, p) (Pechukas and McLafferty 1973) projects out the 
reactive trajectories and may be written explicitly as (Chandler 1978) 

x(9, P) = @(Z(t,))6( - Z( - t,)), (5 )  

where we have written Z(t) for Z[q(t) ,  p(t)], [q(t), p(t)] is the phase-space point resulting 
from propagating the point (9,  p) for time t ,  6 is a unit step function, and t ,  is the plateau 
time. Thus x projects out those trajectories that begin in reactants (e.g. Z( - t,) < 0) and 
end in products (e.g. Z(t,) >0). The product of the classical density, the flux through the 
dividing surface and the characteristic function form a microscopic reactive flux, and 
the product Qtl(T)kc,(T) is often referred to as the total 'reactive flux'. The 
normalization Qfl(T) is the reactant partition function, which may be written as 

(6) Q% T )  =T~, I ,  g C ~ X P  ( - P W  ~"1, 
where xR is a projector of the reactant region of phase space. For example, for a 
bimolecular reaction, f can be chosen as a delta function in the relative Cartesian 
vector between the two reactants for a large internuclear separation giving a partition 
function per unit volume. For a unimolecular reaction, xR can be chosen as a unit step 
function in a reaction coordinate that limits the integration to the reactant region. 

The transition state approximation is obtained by making a short-time approxim- 
ation to the characteristic function in equation (5 )  (Chandler 1978). The TST 
approximation selects those trajectories that pass from the reaction to product side 
over a short period of time, e.g. xTST (9 ,  p ) = O ( Z ) .  Using this approximation we obtain 
the generalized TST expression 
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Variational transition state theory 27 1 

The resulting value for the exact classical rate constant kc,( T )  obtained from 
equation (2) is independent of the choice of the dividing surface defined by 2 = 0. The 
TST expression is dependent on the dividing surface and in VTST the dividing surface 
is optimized to minimize the rate constant. 

In our implementation of VTST, rather than allow arbitrary orientations of the 
dividing surface, a one-parameter sequence of dividing surfaces is considered by the 
following procedure. This is a compromise between a practical scheme that is 
applicable to complex problems and methods for obtaining the best variational 
solution. In applications the constrained variations of the dividing surface still provide 
practical improvements over the conventional choice of placing the dividing surface at 
the saddle point (for example Garrett and Truhlar 1979b). The reaction path is defined 
as the minimum-energy path (MEP), that is the path of steepest descent from the 
saddle point to reactants and products in the mass-scaled coordinates (Shavitt 1959, 
1968, Weston 1959, Marcus 1966,1968b, Truhlar and Kuppermann 1971, Fukui 1974, 
Schaefer 1975). Explicitly, this path is defined by qMEP(s) and is obtained from 
integrating the equation 

q‘(s)=-q MEP (s)= 
ds 

starting from the saddle point at s=O with an initial step along the eigenvector for the 
unbound mode. The reaction coordinate s along the MEP is the (signed) distance from 
the saddle point (negative on the reactant side and positive on the product side). The 
evaluation of the MEP requires calculation of the first derivatives of the potential along 
the MEP. Generalized transition state dividing surfaces are constrained to be 
hyperplanes that are orthogonal to the reaction path and are defined by their location s 
along the reaction coordinate. Given q’(s), a sequence of planar dividing surfaces may 
be defined as 

Z,(q, P) = q’Mq - qMEP(sll = 0. (9) 
Given the MEP, one may define a local coordinate system (Garrett and Truhlar 

1979b) based upon local normal modes at each s that are obtained from diagonalizing 
the matrix of mass-scaled second derivatives with the reaction coordinate motion 
projected out. This requires calculation of the Hessian matrix along the MEP. 
Explicitly, one diagonalizes the matrix (Miller et al. 1980) 

to give a set of normal mode eigenvectors Lm(s) and eigenvalues p~w:(s). The normal 
mode coordinates are (u, 0, where the coordinate t is associated with the tangent 
eigenvector q’(s), and u is associated with the remaining N - 1 bound modes orthogonal 
to the reaction coordinate. Transformation between the Cartesian and normal 
coordinates is given by 

This series of dividing surfaces serve to define the s-dependent generalized TST 
expression for the gas-phase canonical rate constant (Truhlar et al. 1985): 
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212 B. C. Garrett and G. K. Schenter 

where h = 27112, VMEP(s) is the potential evaluated on the MEP at s, and the zero of energy 
of the potential is defined to be the reactant equilibrium geometry (eg. VMEp(s) at 
reactants is zero). The generalized transition state partition function for the bound 
modes orthogonal to the reaction path at s is given in terms of the local normal 
coordinates by 

where Trc,, is the classical trace over the N - 1 bound modes and V(u, 5)  is V(q) with 
the Cartesian coordinates defined by equation (1 1). Note that the partition function is 
defined with its zero of energy at the local minimum of the potentials for the bound 
modes orthogonal to the reaction coordinate. The canonical variational theory (CVT) 
rate constant is obtained by minimizing equation(l2) with respect to s (Garrett and 
Truhlar 1979b): 

kFyT( T )  = min S [ksT(s, T)] - kST(sF,"'( T),  T),  (14) 

where sFT'(T) is the location of the dividing surface that minimizes equation(l2) at 
temperature T.  

2.2. Quantum-mechanical variational transition state theory 
The classical expression for the rate constant given in equation (12) is the starting 

point for including quantum-mechanical effects in VTST. To obtain the appropriate 
quantum-mechanical expression for the rate constant, first the classical mechanical 
partition functions are replaced by their quantum-mechanical analogues (for example 
Garrett and Truhlar 1979~). The quantized generalized transition state rate constant is 
given by 

where Q"( T )  and QGT(s, T )  are evaluated quantum-mechanically. In the quantum- 
mechanical generalization, the classical trace in equation (1 3) is replaced by a quantum- 
mechanical trace. Using an independent normal mode approximation, the potential 
becomes decoupled and one-dimensional energy levels for the bound modes may be 
computed. In this case, the quantized partition function is given by the product of 
partition functions for each mode: 

where the partition function for mode m is given by the sum over Boltzmann factors for 
the energy levels in the mode, that is 

and ~ : ~ ( s , n , , , )  is the generalized transition state energy level for level n, in mode m. 
Within the harmonic approximation, the independent normal mode approximation 
becomes exact and equations (16) and (17) reduce to 
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Variational transition state theory 273 

where om($ is the harmonic frequency for mode m at location s along the MEP. When 
low-frequency modes are present, the harmonic approximation is very often not valid 
and methods for including anharmonicity must be considered (Garrett and Truhlar 
1979e, 1984, Truhlar et al. 1982). In these cases it is often possible to introduce 
quantum-mechanical corrections to the accurate classical partition functions (Pitzer 
and Gwinn 1942, Messina et al. 1993). This is discussed further below for reactions in 
solution when low-frequency modes of the solvent are present. 

With the partition functions in equation (1 5 )  treated quantum-mechanically, the 
rate constant is a hybrid quantized expression in which the bound modes are treated 
quantum-mechanically but the reaction coordinate motion is treated classically. The 
adiabatic theory of reactions (Marcus 1966, 1967, 1968a, Truhlar 1970) provides a 
consistent route to include quantum-mechanical effects in reaction coordinate motion. 
In the adiabatic theory of reactions, coordinates orthogonal to the reaction coordinate 
are treated as 'fast' variables. Reaction probabilities P(n, E )  for each adiabatic state are 
obtained by considering the dynamics on the one-mathematical-dimensional vibr- 
ationally adiabatic potential. In the independent normal-mode approximation the 
adiabatic potential is written 

where the sum is over the bound vibrational modes of the generalized transition state at 
s, and the energy levels &ZT(s, n,) are the same as those used in the partition functions. 
The reaction probabilities P(n, E )  can then be thermally averaged to yield the rate 
constant. When reaction coordinate motion is treated classically, the adiabatic theory 
of reactions yields an expression for the thermal rate constant which is equivalent to 
that obtained from microcanonical variational theory (pVT) even though the 
approximations in the two theories are very different (Garrett and Truhlar 1979b, c). 
Since the one-dimensional scattering problem can be treated quantum-mechanically, a 
multiplicative tunnelling correction factor for the adiabatic theory of reactions can be 
obtained, and the equivalency of pVT and adiabatic theory makes it consistent to use 
the same correction factor to account for the quantization of reaction coordinate 
motion in the pVT. 

Rather than compute the tunnelling through all adiabatic potentials that con- 
tribute significantly to the tunnelling correction factor, for gas-phase reactions the 
tunnelling correction factor is approximated by the tunnelling through the ground- 
state potential only (Garrett et al. 1980): 

( T )  = f i  exp pV,(sCVT( T), n = O ) ]  dE exp (- PE) P(n = 0, E).  (20) s, KCVT/AG 

At low temperatures where tunnelling corrections are most important, quantized 
systems tend to be in the ground state, and this approach provides is a good 
approximation. As temperature increases, tunnelling through excited-state adiabatic 
potentials would contribute relatively more, but tunnelling becomes less important and 
the correction factor decreases until at sufficiently high temperatures it tends to unity. 
The ground-state method gives the correct high-temperature limit, and for intermedi- 
ate temperatures, the tunnelling through excited-state adiabatic potentials is appro- 
ximated (implicitly) by the tunnelling probabilities for the ground-state potential with 
the energy scale shifted by the difference in the excited-state and ground-state energies 
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274 B. C. Garrett and G. K. Schenter 

at the ground-state maximum. The resulting quantum-mechanical CVT rate constant 
with the tunnelling correction factor included is then given by 

(21) kCVT/AG( T )  = p T / A G (  T)kCVT( T)- 

The adiabatic approximation is made in a curvilinear coordinate system and, 
although the potential term is simple, the kinetic energy term is complicated by factors 
dependent upon the curvature of the reaction path (Marcus 1964, 1966, Miller et al. 
1980). As shown by Skodje et al. (1982), the most successful methods for including the 
multidimensional effect of the reaction path curvature in the adiabatic calculations of 
the reaction probabilities are those that specify a tunnelling path that ‘cuts the corner’ 
and shortens the tunnelling length. Marcus and Coltrin (1977) found the optimum 
tunnelling path for the collinear H + H, reaction by finding the path that gave the least 
exponential damping. The small-curvature semiclassical adiabatic ground-state 
(SCSAG) method (Skodje et al. 1981,1982) extends the Marcus-Coltrin method to 
other reactions and to multidimensional reactions. It has been extensively tested and 
shown to be valid for systems in which only one bound mode is coupled to the reaction 
coordinate. The centrifugal-dominant (CD) SCSAG method (Lu et a/ .  1992) provides a 
more suitable approximation for systems with non-zero components of the reaction 
path curvature along several generalized normal modes. The CD SCSAG method 
reduces to the previous SCSAG method in the limit of one non-zero component of the 
reaction-path curvature. The adiabatic tunnelling methods are most valid for systems 
with small to intermediate reaction path curvatures. 

The adiabatic approximation is expected to break down for reactions with large 
reaction path curvatures (e.g. for reactions involving the transfer of a light atom or 
fragment between two heavy moieties). For these systems it is most appropriate to use 
methods that do not rely on the adiabatic approximation in the interaction region. The 
large-curvature ground-state (LCG) tunnelling method approximates the tunnelling 
paths as straight-line tunnelling paths between adiabatic turning points in the reactant 
and product region (Garrett and Truhlar 1983, Garrett et al. 1983, Truhlar et al. 1985, 
Garrett et al. 1989). In the spirit of the approach used by Marcus and Coltrin (1977), the 
least-action ground-state (LAG) method chooses the optimum tunnelling path as the 
path with least exponential damping (least action) from a set of paths interpolated 
between the MEP and the straight-line LCG tunnelling path (Garrett and Truhlar 
1983, Truhlar et al. 1985). The LAG method is the most computationally intensive 
method and, to date, only the LCG method has been implemented for general 
polyatomic reactions. A simpler but more approximate method is to choose the 
optimum tunnelling from the CD SCSAG and LCG methods (Truhlar et al. 1992, Liu 
et al. 1993). 

For the adiabatic tunnelling methods, the information about the potential energy 
surface needed for the calculations of the tunnelling correction factor icCVT’AG( T )  is the 
same as for evaluating the hybrid quantized rate constant in equation(l5). For the 
CD SCSAG method, the necessary information about the curvature of the reaction 
path can be obtained from the gradient and Hessian matrix along the MEP (Miller 
et al. 1980). If a harmonic representation of the potential is sufficient, the calculation 
can be accomplished by knowing the potential, gradient vector and Hessian matrix 
along the MEP. Anharmonicity for bound modes is typically added as selective higher- 
order terms in the potential. In both the LCG and the LAG methods, the tunnelling 
path can sample regions of the potential energy surface far from the MEP and outside 
the region of validity of the expansion of the potential at the MEP. In this case a wider 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Variational transition state theory 275 

region of the potential is needed but is still limited compared with a global potential 
energy surface (Truhlar et al. 1986, Garrett et al. 1989). In the present work we focus on 
the use of methods for which only the expansion in the region of the MEP is sufficient. 
The approach discussed below can be extended to include the LCG and LAG methods, 
but these methods are not pursued here. 

3. Solvent effects 
We outlined above a general procedure for obtaining a rate constant for the general 

case where all degrees of freedom are explicit. The procedure required the identification 
of a path in the multidimensional configuration space, requiring the evaluation of 
gradients of a potential along the path. By defining coordinates normal to the path, a 
generalized transition expression for the rate constant is given by equation (12). With 
the Hessian along the path, within a harmonic approximation for the transverse 
motion, a quantum-mechanical rate constant is recovered. To extend this procedure to 
the condensed phase, we need to define appropriate procedures for obtaining the MEP 
and the effective potential, gradient and Hessian along that path. 

To generalize the procedure to the condensed phase, we first start from the full 
microscopic description of the system. The Hamiltonian for the total system is 
partitioned into a gas-phase component for the cluster model in the absence of the 
solvent and the solvent component that includes coupling between the solvent and 
cluster model: 

H(q, P, X, ~ x )  = Hpadqt P) + f f s o d ~ x ;  q)i (22) 
where q and p are coordinates and conjugate momenta of the solute, and x and px are 
the solvent coordinates and conjugate momenta. The solute and solvent components 
take the same form as in equation(1): 

where Vga,(q) is the potential energy surface for the solute and Vsolv(x; q) is the potential 
energy surface for the solvent including the solvent interactions with the solute. The 
total potential is defined as 

Vq, x) = Vgas(q) + Vso,v(x; 4). (25) 
Here we shall review two levels of approximation for obtaining the rate constant for a 
reactive process in solution. The levels of approximation are, firstly, modelling the 
solvent influence on the solute by assuming equilibrium solvation, and secondly, 
including dynamic solvent effects by using a linear response model. 

3.1. Equilibrium solvent efects 
3.1.1. Classical mechanical rate theory 

First consider the case where there is weak dependence of Hsolv on q and we define 
both the dividing surface Z and the reactant region of phase space by xR in terms of 
(4, p) only. Then we may factor out the solvent partition function 
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276 B. C. Garrett and G. K. Schenter 

in both the expression for the rate constant and the reactant partition function. The 
reactant partition function is approximated by 

QfLT) Qcl, solv(q, T )  Trcl, q C ~ X P  ( - PHgas) ~ " 1  
= Qci, s,Iv(q, T)QFi, gas(T), (27) 

and the rate constant reduces to that for the gas-phase reaction 

The above result shows that, within a TST approximation, the resulting gas-phase rate 
constant is not influenced if Hsolv has a weak q dependence. In addition, the MEP 
required for adding quantum corrections is identical with the gas-phase MEP. 

This result motivates the introduction of an equilibrium solvation description of the 
rate constant. In this case the dependence of Hsolv on q is not ignored, but we still 
assume that the dividing surface Z and the reactant region of phase space are defined in 
terms of solute coordinates alone. An equilibrium solvation Hamiltonian is defined by 

exp[-flHES(q9 P? T) l=Trc l ,x  Cexp(-PH)l 

=Qcl,solv(q, T ) ~ x P  C-PHgas(S, PI]. (29) 
In the case of equilibrium solvation the rate constant expression for generalized 
transition state theory, analogous to equation (7), can be written 

where 

Q~I,E&T)=T~CI,~ Cexp(-PHEs) zRI. (31) 
This expression is identical in form with the rate constant given in equation (7) except 
the full Hamiltonian is replaced by the equilibrium solvation Hamiltonian. The only 
assumption made in deriving equation(30) is that the dividing surface and reactant 
region of phase space are defined in terms of solute coordinates only. 

For the form of the total Hamiltonian given in equations (23)-(25), the equilibrium 
solvation Hamiltonian can be rewritten 

where the equilibrium solvation potential is defined by 

and the q constrained average is given by 

Thus, VEs(q, T )  is just the potential of mean force (McQuarrie 1976) generalized to a 
multidimensional solute. It has long been realized that the effect of equilibrium 
solvation can be included in TST using the potential of mean force (Chandler 1978, 
Truhlar et al. 1983, Hynes 1985a,b, Berne et al. 1988); however, most previous 
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Variational transition state theory 277 

calculations of equilibrium solvation contributions to the TST rate constant express 
the potential of mean force as a function of a single coordinate, namely the reaction 
coordinate. Equation(30) differs in the fact that the rate constant is written as a 
function of a multidimensional equilibrium solvation potential energy surface. 

VTST calculations as outlined in $2  do not require a knowledge of the global 
potential energy surface, only the potential in a quadratic region around the MEP is 
needed. Note that the first-derivative information needed to define the MEP for the 
equilibrium solvation model is given directly by equation (33). The second-derivative 
information needed for the definition of the normal modes used in the evaluation of the 
partition functions are given by 

vES((I)= v(% x)>q - P[(aq v(% x)aq v(% - v(% x)>q<aqv(% x)>ql 

=aqaqvgas+ (aqaqvso*v)q -P(<aq~sol"aq~so,">q - < ~ , ~ s o * " > q ( ~ q ~ , o l v > q ) .  (35) 
The MEP and the harmonic expansion of V,, along the MEP will be different from the 
gas-phase path. It is, however, restricted to span solute coordinate space alone. This 
will not be the case when dynamical solvent effects are introduced in the next section. 

With the planar dividing surfaces defined in terms of the MEP, the classical 
generalized TST rate constant is given by 

where @!'(s, T) is the potential along the MEP on the equilibrium solvation potential, 
Tp, is the value of the equilibrium solvation potential at the reactant equilibrium 
geometry in the equilibrium solvation potential, and the equilibrium solvation 
generalized transition state partition function is defined by an expression similar to 
equation(l3) but with the potential replaced by V,, and the normal mode coordinates 
determined from the Hessian matrix constructed from the second derivatives of the 
equilibrium solvation potential (e.g. equation 35). The generalized transition state 
partition functions are defined with their zeros of energy at the local minimum of the 
potentials for the bound modes. Since the equilibrium solvation potential does not 
necessarily go to zero at the reactant equilibrium geometry, the additional Boltzmann 
factor of the potential at reactants arises in the evaluation of the reaction partition 
function in equation (31). The reactant partition function with this zero ofenergy (at the 
local minimum at the reactant equilibrium geometry) Qt&(7') is defined by 
equation (31) with the Boltzmann factor exp (-PPEs) removed. Because of the change 
in the equilibrium solvation potential from the gas-phase value, the potential Etp(s, T )  
along the MEP, the potentials for the bound vibrations and thereby the partition 
functions Q~?ES(S, T) and Q:,, ES( T )  are also different from their gas-phase counterparts. 
The equilibrium solvation CVT rate constant is obtained by minimizing equation (36) 
with respect to the reaction coordinate. 

It is instructive to examine the generalized transition state expression for the rate 
constant in terms of the thermodynamic formulation. We can rewrite equation (36) as 
(Garrett and Truhlar 1979a4) 
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278 B. C. Garrett and G. K. Schenter 

where K 0  is the reciprocal of the standard state concentration for bimolecular reactions 
and unity for unimolecular reactions, and AGZT& T )  is the classical equilibrium 
solvation generalized transition state standard-state molar free energy of activation as 
a function of the reaction coordinate. Equating equations (36) and (37) and using the 
definition of V,,(q) implied by equations (29) and (32) leads to 

where qFfp(s) is the MEP on the equilibrium solvation potential and qEs is the 
equilibrium geometry on the equilibrium solvation potential. The free energy of 
activation in solution is often separated into a gas-phase free energy of activation plus a 
contribution from solvation: 

AGZT&, T )  = AGZT;%, T )  + AGZT&(s, TI. (39) 

The gas-phase free energy of activation is given by 

Viewed this way, there are three types of contribution to the solvation part of the free 
energy of activation. In the first contribution, contained in the gas-phase potential 
terms in equation (41), solvation can change the reaction path and therefore change the 
contributions from the gas-phase potential along the MEP. The second to last term 
contains contributions arising from changes upon solvation in the potentials for the 
bound modes of the solute. The first two contributions are secondary effects that arise 
because solvation affects the interactions within the cluster model, thereby changing 
the MEP for the reaction and the internal vibrations in the cluster. The last term 
contains the actual mean contribution from the solvent on the reaction energetics. 

Calculations of the equilibrium solvation free energy of activation have been 
performed by Jorgensen and coworkers (for reviews see Jorgensen 1988, 1989) using 
explicit microscopic evaluations. These calculations are carried out using a three-step 
procedure. First, the gas-phase MEP and potential profile along it are obtained from 
high-level ab-initio electronic structure calculations. Second, the solute-solvent and 
solvent-solvent interaction potentials are modelled using analytic functional forms. 
Third, the free energy of solvation of the rigid solute complex is computed from the 
model potentials using statistical perturbation theory. 

It is important to note that equations (33) and (35) refer to explicit microscopic 
evaluations of the gradient and Hessian of vE9 However, only a description of V,, is 
required for the rate constant and its quantum-mechanical generalizations, and other 
approaches can be used to evaluate these quantities. For example, integral equation 
methods have been used to compute the solvation free energy of activation (Chiles and 
Rossky 1984, Huston et a2.1989). Ladanyi and Hynes (1986) carried out a careful study 
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Variational transition state theory 279 

of equilibrium solvation effects within the context of VTST calculations. In this study 
the solvation contribution to the potential of mean force is computed from an extension 
of the equilibrium theory of solvent structure and thermodynamics developed by 
Chandler and Pratt (1976) (see also Pratt and Chandler 1977 and Chandler 1982). Also, 
it is entirely consistent to use an empirical model for VEs, such as lattice dipole models 
(Warshel 1979, 1991) or one based on a continuum dielectric and an electric 
polarization field and a continuum model for the hydrophobicity of the solute (for 
example see the recent review by Cramer and Truhlar 1994). 

The procedure reviewed above only obtains contributions to the solvation part of 
the free energy of activation contained in the last term in equation(41). The secondary 
solvation effects of changes to the MEP and the internal vibrations of the solute are 
neglected. There is evidence from the microsolvation studies of an SN2 reaction by 
Tucker and Truhlar (1990) that the solvation effects on the location and energetics of 
the MEP may be small. The studies of Ladanyi and Hynes indicate that solvation 
effects on the internal vibrations of the solute are small for the case of an atom transfer 
reaction in a rare-gas liquid. Although these studies are encouraging that the inclusion 
of the more complicated contributions to the solvation free energy of activation may 
not be needed, more detailed studies are needed to test this for other types of reactions 
and solvents and for cases where quantum-mechanical effects (such as tunnelling) are 
important. 

3.1.2. Quantum-mechanical variational transition state theory 
For the equilibrium solvation model the quantum-mechanical VTST rate constant 

is obtained using the procedures outlined in 6 2 but with the Hamiltonian H replaced by 
HE, defined in equation(29). The quantized VTST rate constant is given by 

and the quantum-mechanical CVT rate constant with adiabatic ground-state trans- 
mission coefficient is given by 

(43) kCVT/AG( T )  = KCVT/AG( q k C V T  
ES ES ES (T), 

where kg$(T) is obtained by minimizing equation(42) with respect to s. As for the 
classical mechanical case, the change in the effective potential from the gas-phase value 
alters the bound energy levels E&@, nm), and thus the partition functions QZ:(s, T )  and 
Q&(T) and also the adiabatice potential curve . and tunnelling correction factor 

Operationally, VTST calculations using the equilibrium solvation potential are the 
same as for the corresponding gas-phase system. The calculations involve only the 
solute degrees of freedom. The major complication arises in the evaluation of the 
effective potential that requires ensemble averages over the solvent coordinates. 
Although these types of calculations are computationally intensive, the fact that the 
VTST calculations outlined here only involve knowing the potential and its first and 
second derivatives along the MEP holds promise that these types of calculation may be 
possible in the near future. 

On a more fundamental level, it may seem inconsistent to use an effective potential 
that is computed using classical mechanics in a quantum-mechanical calculation. 
However, the use of the classical mechanical free energy of solvation to correct the 
reaction energetics is well founded in the literature. This is equivalent to the approach 

KCVT/AG 
Es (0, from their gas-phase counterparts. 
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280 B. C. Garrett and G. K. Schenter 

outlined here, except that we also consider secondary solvation effects on the MEP and 
its energy profile and on bound energy levels. Of more concern is the fact that the 
tunnelling correction factor is computed in the same manner as for the gas phase. The 
solute vibrational modes are treated quantum-mechanically in the ground-state 
vibrationally adiabatic approximation but the solvent modes are treated classically. 
Therefore the solvent modes are not restricted to their ground state but are effectively 
thermally averaged. This is not such a bad situation since, for the low-frequency modes 
of the solvent, the ground-state vibrations are not representative of those states that 
contribute most significantly to the thermally averaged rate constant. This is true 
because the density of states rises very rapidly with energy in these low-frequency 
modes. Using the thermally averaged potential of mean force represents a physically 
motivated method that includes the important energy levels in an average sense. This 
issue has been discussed in greater detail by Truhlar et al. (1994) where they have tested 
the use of the ground-state tunnelling approximation on the potential of mean force for 
some model reactions in solution. Their conclusions are encouraging for this approach. 

3.2. Non-equilibrium solvent egects 
3.2.1. Classical mechanical rate theory 

The equilibrium solvation model includes the average effect of the solvent on the 
solute energetics but neglects any dynamical influence of the solvent. At the next level of 
complexity, it is possible to introduce dynamical effects by considering the classical 
equations of motion for the solute coordinates q written as 

ct$ = - 8, m, 4 = - 8, V,s(q, T )  + W), 
where 6F is the fluctuation in the force about the mean force: 

(44) 

W) = (8, V S O l V ( 4 ,  XI>, - 8, ~svsolv(4., 4. (45) 
The time dependence of the fluctuating force arises from the time dependence of the 
solvent coordinates. Equation (44) is exact if the time dependence of the solvent 
coordinates is computed from the full dynamics of the system (solute plus solvent). In 
practice we use a reduced, approximate model for 6F based upon linear response theory 
(for example Chandler 1987) that will not require the exact dynamics of the solvent. 

To estimate 6F, a set of effective degrees of freedom y and py are introduced, and it is 
assumed that the dynamics are sufficiently described by the motion from the effective 
non-equilibrium solvation Hamiltonian 

lP12 IP l2  
2P 2P 

H d q ,  P, Y, Py, T )  =- + v~s(4, + + ;P(Y - Cq)TQ2(y - Cq), (46) 

where C2 is the effective multidimensional frequency matrix of an oscillator bath and C 
is a matrix of constants coupling the oscillators to the solute coordinates. Note that 0 
need not be diagonal. (Other choices of a non-equilibrium solvation Hamiltonian are 
possible. This is discussed further in the appendix.) For this form of the effective 
Hamiltonian, the equations of motion of the solute coordinates can be written as a 
GLE in the limit of a continuum of oscillators (Ford et al. 1965, Zwanzig 1973). For the 
GLE the fluctuating force in equation (44) is written 

dt'q(t-t')tj(t')+R(t), (47) 
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Variational transitiofi state theory 28 1 

where the friction tensor t j  in equation (47) is related to the solute-constrained force- 
force correlation function by 

With the solute fixed, 6F(t) = R(t), and the random force term R(t) is related to the 
friction tensor by the same relation, consistent with the second dissipation-fluctuation 
theorem (Kubo et al. 1985). For the Hamiltonian given in equation (46), the force-force 
correlation function is given by 

tj(t) = P(w)6F(0)T)q. (48) 

(49) 
1 

(&F(~)~F(o)~), = - ~ c ~ Q ~  cos (nt) c, 
B 

where averages are now defined in terms of HNS as 

so that 8, V,,(q) = (a, V(q, x)), and <6F), = 0. 
The exact rate constant is given by equation (2) with the characteristic function x 

determined from the dynamics of the entire system. For the partitioning of the 
Hamiltonian in equation (22) the exact expression (for the exact fluctuation about the 
mean force) for the classical rate constant can be rewritten 

In an equilibrium solvation approximation it is assumed that the quantities inside the 
averages over the solvent coordinates are independent of the solvent coordinates. For 
the non-equilibrium solvation model, we wish to retain some dependence of the 
dividing surface, characteristic function and reactant projector on the solvent degrees 
of freedom. This is accomplished by approximating the total system Hamiltonian by 
the non-equilibrium solvation Hamiltonian in equation (46). Then the exact classical 
rate constant is approximated by 

where the non-equilibrium reactant partition function is given by 

Q:i,NS(T)=Trci,q,y C ~ X P  (FPHNs) xR3- (53) 
Equation (52) can be rewritten as equation(51), but with the averages over solvent 
coordinates given in terms of the effective solvent coordinates y (equation 50) instead of 
the original solvent coordinates x (equation 34). 

The TST geneneralization of the above expression is simply 

Note that, if the dividing surface is chosen to be a function of solute coordinates only, 
the rate constant reduces to that obtained from the equilibrium solvation model, 
equation (30). However, here we wish to allow the dividing surface to depend on solvent 
coordinates also. For the calculation of the MEP and harmonic expansion along the 
path, one considers the total effective potential 
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282 B. C. Garrett and G. K. Schenter 

so that in general the MEP spans the space of both the solute and the effective solvent 
coordinates. With the planar dividing surfaces defined in terms of the reaction 
coordinate s for the non-equilibrium potential, the classical generalized TST rate 
constant is given by 

where Vgzp(s, T )  is the potential along the MEP on the non-equilibrium solvation 
potential and the non-equilibrium solvation generalized transition state partition 
function is defined by an expression similar to equation(l3) but with the potential 
replaced by V,, and the normal mode coordinates determined from the Hessian matrix 
constructed from the second derivatives of the non-equilibrium solvation potential. 
Unlike the equilibrium solvation model, the non-equilibrium solvation model includes 
effective solvent modes in addition to the solute modes. The partition functions 
QS:,&, T )  and Qfl, NS(T) include contributions from all the modes in the extended 
model system. 

The Hamiltonian in equation (46) includes frictional effects on reaction dynamics in 
the vicinity of the saddle point but also predicts a non-equilibrium effect on the 
reactants and products. Since we do not want to include non-equilibrium solvation 
effects in the (equilibrium) reactant partition function, the projector xR is chosen to be a 
function of the solute coordinates only, for example xR = xR(q). With this form for the 
projector, the reactant partition function is written 

where Qf,,,,, as defined in equation (3 l), is the classical equilibrium solvation partition 
function for the solute modes at  reactants and QS;: is the partition function for 
effective solvent modes in the zero-coupling limit. Alternatively, the non-equilibrium 
solvation can be modelled by a reaction-coordinate-dependent friction (see the 
appendix) so that the coupling goes to zero in the reactant region. This method also 
recovers the desired result, equation (57), for the reactant partition function. 

As in the equilibrium solvation case, the expression for the rate constant depends 
only on an effective potential V,, in the case of non-equilibrium solvation. To describe 
non-equilibrium solvation, both the equilibrium solvation potential VES(q, T )  and the 
friction tensor q(t) are required. As VEs(q, T )  is determined from the constrained average 
of the total potential over the solvent coordinate (equation 33),  the friction tensor is 
specified by the constrained average of the force-force correlation function. The 
parameters of the oscillator model, the effective frequency matrix R and the coupling 
constants C, are obtained by fitting the force-force correlation function to the cosine 
expansion in equation (49). Some freedom is allowed in choosing these parameters. For 
instance, in the work of Ford et a/. (1965) and Zwanzig (1973), the frequency matrix is 
taken as diagonal and there are non-zero coupling constants between multiple 
oscillators and a solute coordinate. On the other hand, Adelman (1983) chooses the 
frequency matrix to be tridiagonal where C is chosen to couple only one oscillator to 
each solute coordinate. These two forms for the parameters, as well as other choices, 
can be related to each other by similarity transformations. Adelman has suggested 
fitting the parameters using moments of the spectral density of the force-force 
correlation function. In our work, the parameters are obtained by a consistent 
procedure of fitting the cosine expansion (Schenter et a/. 1992). 
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The evaluation of the friction tensor using classical molecular dynamics simul- 
ations is computationally intensive. It has been carried out for several reactions in 
solution for comparisons of the GLE dynamics with exact classical dynamics. This 
work has been recently reviewed by Whitnell and Wilson (1993). The general 
conclusion from these studies is that the linear response theory gives an accurate 
description of the influence of the solvent friction on the reaction dynamics for the 
systems studied. As V,, may be obtained from an empirical model, the present analysis 
is consistent if the friction tensor is obtained from an empirical model instead of 
classical rnicroscopic simulations of equation (48). Examples of different approaches 
are an integral equation method (Huston et a/. 1989) and a polarizable continuum 
model (Bianco et al. 1992). 

The Hamiltonian in equation (46) has been widely used to model solvent friction on 
reaction dynamics. This has been reviewed recently by Hanggi et al. (1990). For a 
reaction model of a one-dimensional solute (a reaction coordinate) coupled to an 
oscillator bath, Dakhnovskii and Ovchinnikov (1985) and Pollak (1986a) have shown 
how the Grote-Hynes (1980) expression for the rate constant can be obtained from this 
Hamiltonian using conventional TST in which the dividing surface is allowed to be a 
function of the effective solvent coordinates as well as the solute coordinate. More 
recently, variational optimization of the dividing surface has been employed to obtain a 
better bound to the exact classical rate constant for this model system (Pollak 1990, 
1991a, b, Pollak et al. 1990, Tucker et al. 1991, Berezhkovskii et al. 1992, Tucker and 
Pollak 1992, Frishman and Pollak 1992, 1993). Extension of this approach to include 
nonlinearities in the coupling and anharmonicities in the potentials using VTST have 
also appeared (Pollak 1991~). 

Most previous investigations of solvent friction effects on the rate constants for 
activated reactions have studied the simple model of a single solute coordinate, the 
reaction coordinate, coupled to the reduced model of the solvent. Reducing the full 
solute-plus-solvent system to a single reaction coordinate plus a solvent bath requires 
including effects of internal motions of the reacting molecules in the friction kernel. The 
linear response theory will not adequately model large-reaction-path-curvature 
coupling that can occur between the reaction coordinate and internal vibrational 
motions of the solute. This type of coupling can cause classical recrossing of the 
transition state dividing surface that is intrinsic to the solute molecule and is not 
described by a GLE. This has been demonstrated in recent studies of multidimensional 
solute systems coupled to an oscillator bath (Schenter et al. 1992). For a model A + BC 
reaction it was found that classical VTST can mitigate these recrossings when the 
coupling to the solvent is sufficiently large, but that at low values of the solvent friction 
(and coupling) the variational theory offered no improvement over conventional TST. 

3.2.2. Quantum-mechanical variational transition state theory 
As for the equilibrium solvation model, the quantum-mechanical VTST rate 

constant for the non-equilibrium solvation model is obtained using the procedures 
outlined in 5 2, but with the Hamiltonian H replaced by HN9 The quantized version of 
equation (56) is written 

where the quantized generalized partition function is obtained by summing the 
Boltzmann factors for the bound energy levels E $ ; ~ , ( S ,  nm), The bound energy levels 
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&, n,) are those for the coupled solute-solvent system, and therefore there are 
more modes than in the equilibrium solvation model. The reactant partition function 
Q:,(T) is the quantized version of equation (57) where both the equilibrium solvation 
reactant partition function and the solvent partition function are quantized. The 
quantum-mechanical CVT rate constant for the non-equilibrium solvation model is 
given by 

(59) kCVTiAG NS ( T )  = K;:"""( T)k;:T( T),  

where khgT(T) is obtained by minimizing equation (58) with respect to s and KCN~'"~(T) 
is the tunnelling correction factor. The adiabatic potential is computed using the 
potential VFfp(s, T )  along the MEP and the ground-state energy levels E$&&, nm). The 
tunnelling correction factor T )  is computed from an expression similar to 
equation (20) but using the ground-state adiabatic potential for non-equilibrium 
solvation. 

As for the equilibrium solvation model, the procedures are operationally the same 
as used in the gas phase; the major complication that arises is obtaining the non- 
equilibrium solvation potential. In addition to the equilibrium solvation potential, the 
friction tensor needs to be evaluated. However, for the simple non-equilibrium 
solvation model described above, the friction tensor only needs to be evaluated at  the 
saddle point. More general models to the friction include dependence of the parameters 
a and C on the reaction coordinate s or, more generally, on the solute coordinates q 
(see appendix and Straus et al. 1993, Straus and Voth 1992, Haynes et al. 1993, and 
Haynes and Voth 1992). Even for these more complicated models of the friction, the 
information will still only be needed along a MEP. Classical mechanical studies have 
indicated that the saddle-point model of the friction provides a good approximation to 
the solvent dynamical effects. This makes sense because the solvent friction in the 
region of the barrier maximum influences the recrossing dynamics most greatly. 
However, quantum-mechanical tunnelling is controlled by greater regions of the MEP 
and may be more sensitive to the friction away from the saddle point. 

The issue of using V,, (or a classical potential of mean force) in the tunnelling 
calculation was discussed above and another complication in the tunnelling calcul- 
ation arises for the non-equilibrium solvation model because of the explicit solvent 
modes. The solvent modes are used to model collective solvent motions that typically 
have low frequencies. This calls into question the validity of the vibrationally adiabatic 
approximation employed in these calculations. As a test of this approximation we have 
recently presented a critical comparison of accurate quantum mechanics with the 
VTST plus tunnelling for a model reaction in solution (McRae et al. 1992). This work 
showed that the worst agreement in the rate constants was a factor of about three, 
indicating that the approximate method was still capable of at least semiquantitative 
agreement. Those preliminary results used the harmonic approximation to describe the 
bound vibrational modes. Subsequent studies by McRae and Garrett (1993) showed 
that the largest portion of the error of a factor of three was attributed to the harmonic 
approximation. The VTST calculations with SCSAG tunnelling corrections for the 
model reaction in solution were found to be limited more by the treatment of 
anharmonicity rather than by errors inherent in the approximations to the reaction 
dynamics. 

Another issue arises concerning the quantum-mechanical tunnelling calculations. 
It may seem inconsistent to take a ciassically derived model Hamiltonian HNS and to 
use it in a quantum-mechanical calculation. Ford et al. (1965,1988) have shown that the 
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Variational transition state theory 285 

same form for the Hamiltonian can be derived from a 'quantum GLE'. Thus the 
problem reduces to whether the classical mechanical parametrization of the model 
Hamiltonian is a good approximation to the actual quantum mechanics. It seems that 
parameters derived from classical mechanics should be adequate for describing the 
low-frequency fluctuations of most liquids. In addition, the model non-equilibrium 
solvation Hamiltonian has been used to describe quantum-mechanical tunnelling in 
dissipative systems starting with the work of Caldeira and Leggett (1981) (see Hanggi 
et al. 1990 for a recent review). In particular, the quantization of conventional TST for 
the model of a single reaction coordinate coupled to the oscillator bath was presented 
by Pollak (1 986b, c). 

4. Concluding remarks 
VTST with semiclassical tunnelling correction factors has been successfully 

implemented for practical calculations of rate constants for gas-phase reactions based 
upon potential energy surfaces. When quantum-mechanical effects, including tunnel- 
ling, are accurately included, these methods are capable of quantitative predictions of 
rate constants. In the present article we have outlined the steps needed to extend to 
solution-phase reactions the VTST with tunnelling calculations based upon potential 
energy surfaces. Consistent procedures for treating quantum-mechanical effects in 
solution have been discussed, including quantization of bound vibrational modes as 
well as quantum-mechanical tunnelling effects. 

The procedures outlined here are computationally intensive but, given the recent 
advances in computational hardware and software, these calculations are possible. 
Solvent effects on the reaction are included through equilibrium and non-equilibrium 
solvation models. This approach requires explicit treatment of only a limited number of 
degrees of freedom (of the solute and possibly some explicit solvent molecules) and 
information about the effective potential energy surface for these explicit coordinates is 
needed only in the region of a reaction valley. Explicitly treating only a limited number 
of coordinates obviates some of the difficulties inherent in quantum-mechanical TST 
calculations on solution-phase reactions (the multiple-saddle-point problem) and also 
allows the quantum-mechanical effects to be included by the standard ad-hoe 
procedure. 
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APPENDIX 
Here we give an example of an extension to the non-equilibrium solvation model of 

4 3.2. The choice of our effective non-equilibrium solvation Hamiltonian given by 
equation (46) is modified to include nonlinear coupling of the solute to the solvent bath 
and coordinate-dependent frequencies. To retain the simplicity of the model, we still 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



286 B. C. Garrett and G. K. Schenter 

require the solvent bath to be harmonic for a fixed solute configuration. An appropriate 
form for the non-equilibrium solvation Hamiltonian is 

where we introduce the arbitrary coordinate-dependent coupling function C(q) and the 
coordinate-dependent bath frequency matrix R(q). Here R, is an arbitrary constant 
matrix that only shifts the zero of energy of the Hamiltonian. A similar form of an 
effective Hamiltonian with only the coordinate-dependent coupling was considered in 
Zwanzig's (1973) general treatment of non-linear generalized Langevin equations (see 
also Haynes and Voth 1992). The purpose of this appendix is to show how the 
parameters vEs(q, T),  Q(q) and C(q) the Hamiltonian can be fitted using microscopic 
simulations. 

As in §3.2., we approximate the force of the solvent on the solute by 

F(t )  = - 8,HNs (A 2) 

6F(t)= (8qHNS)q -dqHNS, (A 3) 

and define fluctuations to this force by 

where the averages (. . .),, are given by equation(50). Since In [det (A)] =Tr  [ln (A)], 
where Tr is a matrix trace of the dimensionality of the bath, the mean force may be 
written as 

Here we have used the fact that ([y - C(q)]), = 0. For fixed q, H,,  is harmonic, so that 
all higher moments of y may be written in terms of 

Inserting this expression into equation (A 4) gives 

( F), = - 8, vEEs. (A 6 )  
Since this takes the same form as equation(33), vEs(q, T )  can be replaced by the 
potential of mean force VE,(q,T). The additional term in HNs that involves the 
determinant of frequencies was chosen to offset contributions from the nonlinear bath 
when the potential of mean force is calculated at a fixed coordinate configuration q. See 
Straus and Voth (1992) for studies involving a Hamiltonian of this form. 

The other parameters of H,, can be fitted using the autocorrelation function of the 
fluctuating force that is obtained from dynamics of the bath with solute coordinates 
'clamped' at a solute configuration (see equation 49) for the analogous expression for 
the linear coupling case). We now consider the coordinate-dependent friction tensor 

dq, 0 = 8<6F(W(O)'),. (A 7) 
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Variational transition state theory 287 

Through the careful evaluation of harmonic averages, this expression may be written in 
closed form as 

V(q, t )  = p(a,qTa2 cos (at) a,c + AV(q, t). (A 8) 
with 

a2 1 * 

cos (at) cos (at) a , p  ~ 

Throughout this analysis we require R2 to be symmetric. For every clamped value of 
the solute coordinates, q, C and C12 must be chosen to reproduce q(q, t). In the case 
where C is linear in q and R2 has no q dependence, we see that this expression reduces 
to equation (49). 
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